## Artist info

### Genre

Punk, Rock

### Sounds like

Dwarves, Zeke, Dick Delicious

### band members

Uncle-Vomit,Mad Dog Tannen-Hate,McFly-Cosmic Key, S Preston Esquire-Trashing Skins

### Influences

Tardis, 1885, Time Travel

### Bio

DeLorean are a band that through Quantum mechanics, also known as quantum physics or quantum theory, is a branch of physics providing a mathematical description of the dual particle-like and wave-like behaviour and interaction of matter and energy. Quantum mechanics describes the time evolution of physical systems via a mathematical structure called the wave function. The wave function encapsulates the probability that the system is to be found in a given state at a given time. Quantum mechanics also allows one to calculate the effect on the system of making measurements of properties of the system by defining the effect of those measurements on the wave function. This leads to the well-known uncertainty principle as well as enduring debate over the role of the experimenter, epitomised in the Schrodinger's Cat thought experiment. Quantum mechanics departs from classical mechanics primarily at the atomic and sub-atomic scales, the so-called quantum realm. In special cases some quantum mechanical processes are macroscopic, but these emerge only at extremely low or extremely high energies or temperatures. The term was coined by Max Planck, and derives from the observation that some physical quantities can be changed only by discrete amounts, or quanta, as multiples of the Planck constant, rather than being capable of varying continuously or by any arbitrary amount. For example, the angular momentum, or more generally the action, of an electron bound into an atom or molecule is quantized. Although an unbound electron does not exhibit quantized energy levels, one which is bound in an atomic orbital has quantized values of angular momentum. In the context of quantum mechanics, the wave–particle duality of energy and matter and the uncertainty principle provide a unified view of the behavior of photons, electrons and other atomic-scale objects. The mathematical formulations of quantum mechanics are abstract. Similarly, the implications are often counter-intuitive in terms of classical physics. The centerpiece of the mathematical formulation is the wavefunction (defined by Schrödinger's wave equation), which describes the probability amplitude of the position and momentum of a particle. Mathematical manipulations of the wavefunction usually involve the bra-ket notation, which requires an understanding of complex numbers and linear functionals. The wavefunction treats the object as a quantum harmonic oscillator and the mathematics is akin to that of acoustic resonance. Many of the results of quantum mechanics do not have models that are easily visualized in terms of classical mechanics; for instance, the ground state in the quantum mechanical model is a non-zero energy state that is the lowest permitted energy state of a system, rather than a traditional classical system that is thought of as simply being at rest with zero kinetic energy. Fundamentally, it attempts to explain the peculiar behaviour of matter and energy at the subatomic level—an attempt which has produced more accurate results than classical physics in predicting how individual particles behave. But many unexplained anomalies remain. Chaotic behavior can be observed in many natural systems, such as the weather Historically, the earliest versions of quantum mechanics were formulated in the first decade of the 20th Century, around the time that atomic theory and the corpuscular theory of light as interpreted by Einstein first came to be widely accepted as scientific fact; these later theories can be viewed as quantum theories of matter and electromagnetic radiation. Following Schrödinger's breakthrough in deriving his wave equation in the mid-1920s, quantum theory was significantly reformulated away from the old quantum theory, towards the quantum mechanics of Werner Heisenberg, Max Born, Wolfgang Pauli and their associates, becoming a science of probabilities based upon the Copenhagen interpretation of Niels Bohr. By 1930, the reformulated theory had been further unified and formalized by the work of Paul Dirac and John von Neumann, with a greater emphasis placed on measurement, the statistical nature of our knowledge of reality, and philosophical speculations about the role of the observer. The Copenhagen interpretation quickly became (and remains) the orthodox interpretation. However, due to the absence of conclusive experimental evidence there are also many competing interpretations. Quantum mechanics has since branched out into almost every aspect of physics, and into other disciplines such as quantum chemistry, quantum electronics, quantum optics and quantum information science. Much 19th Century physics has been re-evaluated as the classical limit of quantum mechanics and its more advanced developments in terms of quantum field theory, string theory, and speculative quantum gravity theories.